US009442835B1

a2 United States Patent 10) Patent No.: US 9,442,835 B1

Watts 45) Date of Patent: Sep. 13, 2016
(54) DYNAMIC MEMORY ALLOCATION USING (56) References Cited
SUBALLOCATION OF CELL BLOCKS
U.S. PATENT DOCUMENTS
(71) Applicant: CA, Inc., Islandia, NY (US) 2008/0209154 Al* 82008 Schneider G06F7ﬁ;(1)%3
2008/0222380 Al* 9/2008 Szecccovvveenee GOG6F 12/023
(72) Inventor: Keith Watts, York, ME (US) 711/170
2014/0115424 A1* 4/2014 YOO ..ccoovvvvevvennnne GOG6F 12/00
714/763
(73) Assignee: CA, Inec., Islandia, NY (US) * cited by examiner
. . o . Primary Examiner — Daniel Tsui
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Coats & Bennett, PL.L.C.
patent is extended or adjusted under 35
U.S.C. 154(b) by 204 days. 7 ABSTRACT
A computer-implemented method is disclosed in which a
memory suballocation application obtains, from an under-
(21) Appl. No.: 14/193,885 lying memory allocation system (UMAS), allocation of a
plurality of cell blocks. Each cell block includes a plurality
(22) Filed: Feb. 28. 2014 of equally-sized cells and a bitmap indicating which of its
i cells are available. A request is received from a requesting
application for dynamic allocation of a given amount of
(51) Int. CL memory. If the given amount of memory exceeds a maxi-
GOG6F 12/02 (2006.01) mum cell size, memory allocation is initiated via the UMAS
GO6F 12/06 (2006.01) for the given amount of memory without using the cell
’ blocks. If the given amount of memory does not exceed the
(52) US. CL maximum cell size, a desired cell size is determined. If a
CPC GO6F 12/023 (2013.01); GOGF 12/0669 bitmap of one of the cell blocks indicates that a cell having
(2013.01) the desired cell size is available, the memory suballocation
(58) TField of Classification Search application is used to dynamically allocate a cell having the

CPC ittt GO6F 12/023
See application file for complete search history.

desired cell size to the requesting application.
20 Claims, 7 Drawing Sheets

10
=
P
1OA 108
¢ "
REQUESTING RECLESTING | | REQUESTING
APPLICATION 1 | APPLICATION APPLICATION
J
MEMORY CIRCUT
14 22
[/’

MEMORY SUBALLOCATICN APPLICATION

UNDERLYING MEMORY ALLOCATION SYSTEM

HAP

12

U.S. Patent Sep. 13,2016 Sheet 1 of 7 US 9,442,835 B1

10
Z
16A OB 16M
§ § y
REQUESTING REQUESTING | . | REQUESTING
AFPLICATICN APPLICATION APPLICATION
1&
H
MEMORY CIRCUIT
14 22
Y , /
MEMORY SUBALLOCATION APPLICATION {ELL BLOCKS
20
¢
UNDERLYING MEMORY ALLOCATION SYSTEM = HEAP
<
12

U.S. Patent

16A
N
REQUESTING

Sep. 13, 2016

14

Y

Sheet 2 of 7

US 9,442,835 B1

....;
el

MEMORY SUBALLOCATION
APPLICATICN

MEMORY CIRCUIT

APPLICATION

o
N

REQUESTING

= CELL BLOCK

APPLICATION

15M
\
REQUESTING

APPLICATION

12

%

UNDERLYING MEMORY

ALLOCATION SYSTEM

FIG. 1A

U.S. Patent Sep. 13,2016 Sheet 3 of 7 US 9,442,835 B1

E i
00
CELlg
24~ %0)
Lyl
CEily |20
. 30
\
CELL,
20~ “
20 OVERRUN GAP .
L™ ; CTRLS §| BITMAP ; ni-%\
{1 f" % [\22
e 54
oY 24 \\/\ 27
FIG.2 2
24
™
\
0 bo 10 O O N O ¥
0 2 3 4 5 6 A n

U.S. Patent Sep. 13,2016 Sheet 4 of 7 US 9,442,835 B1

100

107 OBTAHN, FROM UNDERLYING MEMORY ALLOCATION SYSTEM, f
FET ALLOCATION OF A PLURALITY OF CELL BLOCKS TO A
MEMORY SUBALLOCATICN APPLICATION

104~ | RECEIVE, FROM REQUESTING APPLICATION, A REQUEST FOR
DYNAMIC ALLOCATION OF A GIVEN AMOUNT OF MEMORY {X)

T MK
S YALID CELL SIZE)

I8 X A VALD™

INTIATE MEMORY ALLOCATION - N
S LS

Vi UNDERLYING MEMORY
ALLOCATION SYSTEM FOR X 12 ‘
THAT DOES NOT USE ANY OF Y ROUND X UP TO NEAREST

THE PLURALITY OF CELL BLOCKS INTERPRET X AS THE VALID CFLL SIZE 10

; DESIRED CELL SiZE DETERMINE DESIRED CELL
108 SIZE
]

W

" TELL HAVING DESIRED ™
S GELL SIZE AVAILABLE)

TS

DYNAMICALLY ALLCCATE, VIA MEMCRY

W&~ SUBALLOCATION APPLICATION, THE CELL

HAVING THE DESRED CELL SIZETO THE
REQUESTING APPLICATION

UPDATE BITMAP OF THE CELL BLOCK TO
WHICH THE CELL BELONGS TO INDICATE THAT
THE CELL 15 NO LONGER AVAILABLE

U.S. Patent

Sep. 13, 2016 Sheet 5 of 7

FROM 112, 114

1o
CELL HAVING DESIRED ™ ES

S CELL SIZE AVALABLEL

REQUEST, FROM THE UNDERLYING MEMCRY
ALLOCATION SYSTEM, AN ADDITIONAL CELL
BLOCK HAVING EQUALLY-SIZED CELLS OF THE
DESIRED CELL SIZE

124 g

OBTAIN AN ALLOCATION QF THE ADDITIONAL
CELL BLOCK

——

26 |

DYNAMICALLY ALLOCATE A CELLTO THE
REQUESTING AFPLICATION VIA THE MEMORY
SUBALLOCATION APPLICATION AND FROM THE
DDITIONAL CELL BLOCK

126

UPDATE THE BITMAP OF THE ADDITIONAL CELL
BLOCK TO WHICH THE CELL BELONGS 10
INDICATE THAT THE CELL 1S NO LONGER

AVAILABLE

FIG. 4A

US 9,442,835 B1

TO 18

U.S. Patent

Sep. 13, 2016 Sheet 6 of 7

200

J

Yo .
202

RECEIVE A REQUEST TO DEALLOCATE A

SPECIFIED CELL, WHEREIN THE REQUEST

INCLUDES A MEMORY ADDRESS OF THE
SPECIFIED CELL

204

BASED ON THE MEMORY ADDRESS OF THE
SPECIFIED CELL, IDENTIFY A CELL BLOCK TO
WHICH THE SPECIFIED CELL BELONGS

UPDATE BITMAP OF THE IDENTIFIED CELL
BLOCK TO INDICATE THAT THE SPECIFIED
CELL IS AVAILABLE

FIG. D

US 9,442,835 B1

U.S. Patent Sep. 13,2016 Sheet 7 of 7 US 9,442,835 B1

BO4—~ | MEMORY CRCUIT

SUZN conmo

S00~_] COMMUNICATION
INTERFACE

FIG. ©

US 9,442,835 Bl

1
DYNAMIC MEMORY ALLOCATION USING
SUBALLOCATION OF CELL BLOCKS

TECHNICAL FIELD

The present disclosure relates to memory allocation, and
more particularly relates to dynamic memory allocation
using a plurality of cell blocks that each include a plurality
of equally-sized cells.

BACKGROUND

In computer programming, static variables (e.g., global
variables) have a lifetime that extends to the life of a
program. However, when the program stops executing, these
variables are deallocated. Similarly, automatic variables
(e.g., local variables) have a lifetime that extends to the
duration of the function in which they are executed, but once
that function completes execution then they are deallocated,
and therefore they do not survive multiple function calls.
Moreover, the size of static and automatic variables must be
known when a program is compiled.

To facilitate variables whose size is unknown until run-
time, and/or to facilitate variables whose life extends outside
of the execution of a program or function, dynamic memory
allocation is used to create dynamic variables. In the prior
art, dynamic allocation has used a “heap” portion of system
memory. Use of the heap has involved a complex system of
pointers which requires a significant amount of computing
resources to process. For example, in the C programming
language “malloc” is a commonly used dynamic memory
allocation tool. When invoked, malloc looks for free space
in the heap, and once free space is found it reserves that free
space and returns a pointer to the reserved portion of the
heap. The process of looking for free space in the heap (and
correspondingly freeing up used space in the heap through
deallocation when it is no longer needed) has required a
considerable amount of computing resources. An alternate
dynamic memory allocation scheme known as the “buddy
system” provides some improvements, but is still relatively
inefficient.

SUMMARY

According to one aspect of the present disclosure, a
computer-implemented method is disclosed which obtains,
from an underlying memory allocation system, an allocation
of a plurality of cell blocks to a memory suballocation
application. Each of the cell blocks includes a plurality of
equally-sized cells and also includes a bitmap indicating
which of its plurality of cells are available. A request for
dynamic allocation of a given amount of memory is received
from a requesting application. A determination is made of
whether the given amount of memory exceeds a maximum
cell size. If the given amount of memory exceeds the
maximum cell size, a memory allocation is initiated via the
underlying memory allocation system for the given amount
of memory that does not use any of the plurality of cell
blocks. If the given amount of memory does not exceed the
maximum cell size, a desired cell size is determined by:
interpreting the given amount of memory as a desired cell
size if the given amount of memory is a valid cell size; or
rounding the given amount of memory up to a nearest valid
cell size to determine the desired cell size if the given
amount of memory is not a valid cell size. If a bitmap of one
of the plurality of cell blocks indicates that a cell having the
desired cell size is available, then the cell having the desired

10

25

30

40

45

55

2

cell size is dynamically allocated to the requesting applica-
tion, via the memory suballocation application. The bitmap
of the cell block to which the cell belongs is updated to
indicate that the cell is no longer available.

According to another aspect of present disclosure, a
computing device is disclosed which includes a memory
circuit and a controller. The controller is configured to
obtain, from an underlying memory allocation system, an
allocation of a plurality of cell blocks to a memory subal-
location application. Each of the cell blocks includes a
plurality of equally-sized cells and also includes a bitmap
indicating which of its plurality of cells are available. The
controller is further configured to receive, from a requesting
application, a request for dynamic allocation of a given
amount of memory, and determine if the given amount of
memory exceeds a maximum cell size. The controller is
further configured to, if the given amount of memory
exceeds the maximum cell size, initiate a memory allocation
via the underlying memory allocation system for the given
amount of memory that does not use any of the plurality of
cell blocks. The controller is further configured to, if the
given amount of memory does not exceed the maximum cell
size, determine a desired cell size by interpreting the given
amount of memory as a desired cell size if the given amount
of memory is a valid cell size, or rounding the given amount
of memory up to a nearest valid cell size to determine the
desired cell size if the given amount of memory is not a valid
cell size. The controller is further configured to, if a bitmap
of one of the plurality of cell blocks indicates that a cell
having the desired cell size is available, dynamically allo-
cate, via the memory suballocation application, the cell
having the desired cell size to the requesting application; and
update the bitmap of the cell block to which the cell belongs
to indicate that the cell is no longer available.

According to another aspect of the present disclosure, a
computer program product is disclosed which includes a
computer readable storage medium having computer read-
able program code embodied therewith. The computer read-
able program code includes computer readable program
code configured to obtain, from an underlying memory
allocation system, an allocation of a plurality of cell blocks
to a memory suballocation application, wherein each of the
cell blocks includes a plurality of equally-sized cells and
also includes a bitmap that indicates which of its plurality of
cells are available. The computer readable program code
also includes computer readable program code configured to
receive, from a requesting application, a request for dynamic
allocation of a given amount of memory, and computer
readable program code configured to determine if the given
amount of memory exceeds a maximum cell size. The
computer readable program code also includes computer
readable program code configured to initiate a memory
allocation via the underlying memory allocation system for
the given amount of memory that does not use any of the
plurality of cell blocks if the given amount of memory
exceeds the maximum cell size. The computer readable
program code also includes computer readable program
code configured to, if the given amount of memory does not
exceed the maximum cell size determine a desired cell size
by: interpreting the given amount of memory as a desired
cell size if the given amount of memory is a valid cell size;
or rounding the given amount of memory up to a nearest
valid cell size to determine the desired cell size if the given
amount of memory is not a valid cell size. The computer
readable program code also includes computer readable
program code configured to, if a bitmap of one of the
plurality of cell blocks indicates that a cell which has the

US 9,442,835 Bl

3

desired cell size is available: dynamically allocate, via the
memory suballocation application, the cell which has the
desired cell size to the requesting application; and update the
bitmap of the cell block to which the cell belongs to indicate
that the cell is no longer available.

Of course, the present disclosure is not limited to the
above features and advantages. Indeed, those skilled in the
art will recognize additional features and advantages upon
reading the following detailed description, and upon view-
ing the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are illustrated by way of
example and are not limited by the accompanying figures
with like references indicating like elements.

FIG. 1 illustrates a number of functional elements of an
example computing device operative to perform memory
allocation.

FIG. 1A illustrates aspects of FIG. 1 in greater detail
according to an example embodiment.

FIG. 2 illustrates a plurality of example cell blocks.

FIG. 3 illustrates an example bitmap for a cell block.

FIG. 4 illustrates an example memory allocation method.

FIG. 4A illustrates a particular embodiment of the method
of FIG. 1

FIG. 5 illustrates an example memory deallocation
method.

FIG. 6 schematically an example computing device
operative to perform the memory allocation method of FIG.
4.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described
herein in any of a number of patentable classes or context
including any new and useful process, machine, manufac-
ture, or composition of matter, or any new and useful
improvement thereof. Accordingly, aspects of the present
disclosure may be implemented entirely as hardware,
entirely as software (including firmware, resident software,
micro-code, etc.) or combining software and hardware
implementation that may all generally be referred to herein
as a “circuit,” “module,” “component,” or “system.” Fur-
thermore, aspects of the present disclosure may take the
form of a computer program product embodied in one or
more computer readable media having computer readable
program code embodied thereon.

Any combination of one or more computer readable
media may be utilized. The computer readable media may be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any

2 <

10

15

20

25

30

35

40

45

50

55

60

65

4

tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable signal medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Scala, Smalltalk, Fiffel, JADE, Emerald, C++, C#,
VB.NET, Python or the like, conventional procedural pro-
gramming languages, such as the “C” programming lan-
guage, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP,
ABAP, dynamic programming languages such as Python,
Ruby and Groovy, or other programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider) or in a cloud computing
environment or offered as a service such as a Software as a
Service (SaaS).

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatuses (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable instruction execution apparatus, create a mechanism
for implementing the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

These computer program instructions may also be stored
in a non-transitory computer readable medium that when
executed can direct a computer, other programmable data
processing apparatus, or other devices to function in a
particular manner, such that the instructions when stored in
the computer readable medium produce an article of manu-
facture including instructions which when executed, cause a
computer to implement the function/act specified in the
flowchart and/or block diagram block or blocks. The com-
puter program instructions may also be loaded onto a
computer, other programmable instruction execution appa-

US 9,442,835 Bl

5

ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatuses or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The present disclosure describes a method, apparatus, and
computer program product for memory allocation. The
techniques described utilize cell blocks which include a
plurality of equally-sized cells, and those cell blocks are
suballocated based on dynamic memory allocation requests
(e.g., instead of using the heap). By using cell blocks, and
optionally also using a specific cell block addressing
scheme, significant performance gains can be achieved. In
one specific embodiment each cell block has a size of 64
kilobytes (KB), and a number of cell blocks are allocated,
each with cell having equally-sized cells of a size that is a
power of 2 (e.g., 16 bytes, 32 bytes, 64 bytes, 128 bytes, 256
bytes, etc.).

Referring now to FIG. 1, a number of functional elements
of an example computing device 10 operative to perform
memory allocation are shown. The elements include an
underlying memory allocation system 12, a memory subal-
location application 14, a number of requesting applications
16, and a computer readable storage medium (shown as
memory circuit 18). The memory circuit includes a heap 20
and a plurality of cell blocks 22. The underlying memory
allocation system 12 is operative to dynamically allocate
memory from the heap 20. In one example, the underlying
memory allocation system 12 is an operating system (e.g.,
WINDOWS or LINUX) or a C or C++ runtime library. The
memory suballocation application 14 is operative to perform
dynamic memory allocation to suballocate cell blocks from
the plurality of cell blocks 22 to the plurality of requesting
application 16A-16M.

FIG. 1A illustrates aspects of FIG. 1 in greater detail
according to an example embodiment, in which each
requesting application has its own group of cell blocks 22,
and in which cell blocks are not shared between requesting
applications. For example, in FIG. 1A requesting application
16A has been suballocated a plurality of cell blocks 22A,
requesting application 16B has been suballocated a plurality
of cell blocks 22B, and requesting application 16 M has been
suballocated a plurality of cell blocks 22M. The requesting
applications do not share their cell blocks between each
other. Thus, requesting application 16A cannot obtain a
dynamic memory allocation from cell blocks 22B or 22M,
but can obtain a dynamic memory allocation from one of the
cell blocks 22A. The heap 20, meanwhile, can be shared by
the plurality of requesting applications at the same time.

Each cell block include a plurality of equally-sized cells
and also includes a bitmap indicating which of its plurality
of cells are available. FIG. 2 illustrates an example collec-
tion of cell blocks 22, which each include a cell section 24,
an overrun gap 26, and a control and bitmap section 28. The
cell section 24 includes a plurality of equally-sized cells 30
(shown as CELL,-CELL,). The overrun gap 26 acts as
buffer between sections 24 and 28, as a preventative step to
prevent a memory overrun from overwriting section 28.
Section 28 includes a controls section 32 which indicates the
size of the plurality of equally-sized cells 30 in its corre-
sponding cell block 22, and also includes a bitmap 34 which
indicates which of the plurality of cells 30 are available.
Thus, in some embodiments within a given cell block 22, the
plurality of equally-sized cells 30 are located in a beginning
portion of the cell block (section 24), the bitmap 34 of the

10

15

20

25

30

35

40

45

50

55

60

65

6

cell block 22 is located in a later portion of the cell block
(section 28) having a higher memory address than the
beginning portion, and the overrun gap 26 separates the
beginning portion of the cell block 22 and the later portion
of the cell block 22.

FIG. 3 shows an example bitmap 34, in which each bit
corresponds to one of the cells 30 of a given cell block. In
one example a “0” indicates that a corresponding cell is not
available, and a “1” indicates that a corresponding cell is
available. Of course, this is only an example, and it is
understood that the opposite arrangement could be used
(e.g., where a “0” indicates availability and a “1” indicates
unavailability).

In one example each cell size is a power of two (e.g., 16,
32, 64, 128, 256, etc.). In the same or another example, each
cell block has a size of 64 kilobytes (KB), section 24 has 60
KB, section 26 is 3 KB, and section 28 is 1 KB. In such a
configuration, approximately 8,000 cells could be tracked
with a single bitmap 34 (one per bit for approximately 1
KB).

FIG. 4 illustrates an example memory allocation method
100. According to the method, a plurality of cell blocks 22
are allocated to memory suballocation application 14 (step
102). The allocation of step 102 is performed by underlying
memory allocation system 12 such that the memory subal-
location application 14 obtains the allocation of the plurality
of cell blocks 22. As discussed above, each of the cell blocks
22 includes a plurality of equally-sized cells 30 and also
includes a bitmap 34 that indicates which of its plurality of
cells 30 are available (see FIGS. 2-3). In this regard,
“equally-sized cells” means that within a given cell block
22, each cell 30 has the same size, but does not require all
cell blocks 22 to use cells of the same size. Thus, for
example, one cell block may contain equally-sized cells that
are 16 bytes, and another cell block may contain equally-
sized cells that are 32 bytes, etc.

For the discussion below, assume that in block 102 the
following four cell blocks are allocated: Cell,, (16 byte cells),
Cell, (32 byte cells), Cell, (64 byte cells), and Cell; (128
byte cells). Also assume that 128 bytes is a maximum cell
size.

A request is received from a requesting application 16 for
a dynamic allocation of a given amount of memory (step
104). A determination is made if the given amount of
memory exceeds a maximum cell size (step 106). If the
given amount of memory exceeds the maximum cell size
(e.g., if a 150 byte allocation is requested in block 104,
which exceeds the 128 byte maximum), a memory alloca-
tion is initiated via the underlying memory allocation system
12 for the given amount of memory that does not use any of
the plurality of cell blocks (step 108).

However, if the given amount of memory does not exceed
the maximum cell size (a “no” to 106), a desired cell size is
determined (steps 112, 114). If the given amount of memory
is a valid cell size (e.g., if 16 bytes are requested), the given
amount of memory is interpreted as a desired cell size (step
112). Otherwise, if the given amount of memory is not a
valid cell size (e.g., 14 bytes, which is not a power of 2), then
the given amount of memory is rounded up to a nearest valid
cell size (e.g., 16 bytes) to determine the desired cell size
(step 114). A valid cell size is a cell size used by equally-
sized cells in one of the plurality of cell blocks. Thus, if no
cell block uses 16 byte cells, then 16 bytes would not be
considered a valid cell size. However, if an allocated cell
block uses equally-sized cell of 16 bytes (which is the case
in this example), then 16 bytes is a valid cell size.

US 9,442,835 Bl

7

A determination is made of whether a cell having the
desired cell size is available (e.g., are any 16 byte cells
available) (step 116). This may involve, for example, parsing
the bitmaps of one or more cell blocks 22 whose cells are of
the desired cell size (e.g., the bitmaps of multiple cell blocks
22 which all have 16 byte cells) to determine if any cells in
the one or more cell blocks are available.

If a bitmap of one of the plurality of cell blocks indicates
that a cell having the desired cell size is available (a “yes”
to 116), then the memory suballocation application 14 is
used to dynamically allocate the cell which has the desired
cell size to the requesting application 16 (step 118), and the
bitmap of the cell block 22 to which the cell belongs is
updated to indicate that the cell is no longer available (step
120).

FIG. 4A illustrates a particular embodiment of the method
of FIG. 1. A determination is made of whether a cell having
the desired cell size is available (step 118), and if a cell
having the desired cell size is not available (e.g., if all cells
are full in cell blocks having 16 byte cells), then the memory
suballocation application 14 requests an additional cell
block having equally-sized cells of the desired cell size (e.g.,
16 bytes) from the underlying memory allocation system 12
(step 122).

An allocation of the requested additional cell block is
obtained from the underlying memory allocation system 12
(step 124). The memory suballocation application 14
dynamically allocates a cell to the requesting application 16
via from the additional cell block (step 126). The memory
suballocation application 14 updates the bitmap of the
additional cell block to which the additional cell belongs to
indicate that the cell is no longer available (step 128) (e.g.,
by changing a “1” in the bitmap to a “0”). In one or more
embodiments (e.g., as described in connection with FIG. 1A
above), once the additional cell block has been allocated to
a given requesting application (step 124), that cell block
cannot be suballocated to a different requesting application,
and can only be suballocated to the single, given requesting
application.

FIG. 5 illustrates an example memory deallocation
method 200, which deallocates a cell of a memory block for
the purposes of the memory suballocation application 14.
Only the suballocation of the cell block is deallocated
though (i.e., the cell block to which the cell belongs remains
allocated to the memory suballocation application 14). In
one example the allocated cell blocks are not deallocated
back to the underlying memory allocation system 12 until
the memory suballocation application is terminated.

A request is received to deallocate a specified cell,
wherein the request includes a memory address of the
specified cell (step 202). Based on the memory address of
the specified cell, a cell block is identified to which the
specified cell belongs (step 204). The bitmap of the identi-
fied cell block is updated to indicate that the specified cell is
available (step 206) (e.g., by changing a “0” in the bitmap
to a “1”).

In one embodiment of the method 200, each cell block has
a size of 64 KB, the four least significant hexadecimal digits
of each memory block base address is 0000, and identifying
a cell block to which the specified cell belongs (step 204)
comprises performing an “AND” operation between the
memory address of the specified cell and the hexadecimal
value FFFF0000 to determine a base address of the identi-
fied cell block. In this embodiment, each memory block has
a hexadecimal address format of xxxx0000 (where “xxxx”
indicates a four digit “nibble”). Thus, if an address of a cell
was 87019301, and an AND operation was performed

5

10

15

20

25

30

35

40

45

50

55

60

65

8

between this value and FFFF0000, then the result would be
87010000, meaning that 87010000 was a base address of the
cell block to which the cell 87019301 belonged.

To explain the example above in greater detail, the
hexadecimal value FFFF is 1111 1111 1111 1111 in binary,
which causes the four most significant hexadecimal digits of
the address to remain the same (i.e. 8701 remains 8701 after
the AND operation). Meanwhile, the four least significant
hexadecimal digits of 0000 (which is 0000 0000 0000 0000
in binary) will render the four least significant hexadecimal
digits of the address to be zero (thus 9301 becomes 0000).
This addressing scheme and address lookup method pro-
vides a quick and efficient way of finding a cell block using
minimal computational resources.

In one or more embodiments, the allocation, via the
underlying memory allocation system 12, of the plurality of
cell blocks 22 to the memory suballocation application 14 is
preceded by a memory request. In one example, that
memory request specifies that the memory address of each
cell block 22 allocated must be aligned on a 64 KB bound-
ary, such that the four least significant hexadecimal digits of
each cell block address are 0000. An example hexadecimal
memory address that is aligned on a 64 KB boundary is
12340000. This could facilitate the cell block address iden-
tification method discussed above.

FIG. 6 schematically an example computing device 300
operative to perform the memory allocation method 100 of
FIG. 4 (and that may be used as the computing device 10 of
FIG. 1). The computing device 300 includes one or more
processing circuits (shown as controller 302), a computer
readable storage medium (shown as memory circuit 304),
and a communication interface 306. The memory circuit 304
may be used as the memory circuit 18 of FIG. 1, for
example.

The controller 302 is operative to support an underlying
memory allocation system 12, a memory suballocation
application 14, and a requesting application 16 (see FIG. 1).
The controller 302 is configured to obtain, from the under-
lying memory allocation system 12, an allocation of a
plurality of cell blocks 22 to the memory suballocation
application 14, wherein each of the cell blocks 22 includes
a plurality of equally-sized cells and also includes a bitmap
that indicates which of its plurality of cells are available.

Although these are only non-limiting example values,
assume again that the following four cell blocks are allo-
cated: Cell,, (16 byte cells), Cell, (32 byte cells), Cell, (64
byte cells), and Cell, (128 byte cells). Also assume that 128
bytes is a maximum cell size.

The controller 302 receives, from a requesting application
16, a request for dynamic allocation of a given amount of
memory, and determines if the given amount of memory
exceeds a maximum cell size. If the given amount of
memory exceeds the maximum cell size (e.g., if a 150 byte
allocation is requested, which exceeds the 128 byte maxi-
mum), the controller 302 initiates a memory allocation via
the underlying memory allocation system 12 for the given
amount of memory that does not use any of the plurality of
cell blocks (e.g., using heap 20). If the given amount of
memory does not exceed the maximum cell size, the con-
troller 302 determines a desired cell size. If the given
amount of memory is a valid cell size (e.g., if 16 bytes are
requested), the controller 302 interprets the given amount of
memory as a desired cell size. Otherwise, if the given
amount of memory is not a valid cell size (e.g., 14 bytes), the
controller 302 rounds the given amount of memory up to a
nearest valid cell size (e.g., 16 bytes) to determine the
desired cell size. If a bitmap of one of the plurality of cell

US 9,442,835 Bl

9

blocks indicates that a cell which has the desired cell size is
available, then the controller 302 dynamically allocates, via
the memory suballocation application 14, the cell which has
the desired cell size to the requesting application 16, and
updates the bitmap of the cell block 22 to which the cell
belongs to indicate that the cell is no longer available.

In one or more embodiments, the memory circuit 304
includes a computer program product 308 that comprises
computer readable program code stored on a computer
readable storage medium (e.g., memory circuit 304) that
configures the computing device 300 to implement one or
more of the techniques described above (e.g., method 100).

In one example the underlying memory allocation system
12 is an operating system (e.g., WINDOWS, LINUX, or
Z0S). In one example, the underlying memory allocation
system 12 is a C or C++ runtime library which implements
a memory allocation function such as “malloc” in C or
“new” in C++. In one example the memory suballocation
application 14 is a program that operates on top of the
operating system to perform memory allocation, such as the
“AION Business Rules Expert” product from CA TECH-
NOLOGIES, which at times performs a considerable
amount of memory allocation when analyzing high volumes
of business rules. In one example the memory suballocation
application 14 is part of an operating system (e.g., acts as an
operating system component to perform memory allocation
as complete or partial alternative to native memory alloca-
tion). Thus, although the word “application” is used in the
phrase “memory suballocation application,” it is understood
that the memory suballocation application 14 is not limited
to being what is commonly thought of as a user application
that executes on top of the operating system. Rather, as
discussed above, the memory suballocation program could
be a runtime library and/or an operating system component,
for example.

Although some specific examples have been discussed
above, it is understood that these are only non-limiting
examples, and that other examples could be used. For
example, although 128 bytes was discussed as an example
maximum cell size, in one or more embodiments the maxi-
mum cell size is greater (e.g., 2048 bytes). Also, 64 KB is
only an example, not a required, cell block size. For
example, similar capabilities could be established for other
powers of 2, such as 32 KB, 128 KB, 256 KB, etc. As
described above, it can be beneficial for the base address of
each cell block to be similarly aligned by the underlying
memory allocation system 12, and for the base addresses to
be determinable via a corresponding AND operation value.
For example, for 32 KB cell blocks a hexadecimal value of
FFFF8000 could be used in the AND operation to determine
a base address of a cell block (instead of using an FFFF0000
as in the 64 KB cell blocks described above).

Moreover, cell blocks could be internally arranged dif-
ferently than shown in FIG. 2. For example, the cells may
not be located at the beginning of the cell block, but could
instead be located at the end of the cell block. Also, the
overrun gap could be omitted. Although, the bitmap for a
given cell block could be located outside of the cell in one
example.

The techniques discussed above could be useful for
applications that endure a lot of overhead as a consequence
of memory allocation and deallocation. Also, they could be
beneficial for consumers encountering CPU saturation chal-
lenges, as the techniques discussed above can offer a dra-
matic reduction in CPU usage performing memory alloca-
tion and deallocation more quickly than prior art techniques.

20

25

40

45

60

10

The techniques discussed above could be used to improve
the GETMAIN, FREEMAIN, or STORAGE memory allo-
cation function for IBM mainframe assembler programs.
The techniques discussed above could also be used to
improve IBM Language Environment calls on a mainframe,
such as those involving COBOL or PL1 programs. The
techniques discussed above could also be used to improve
“malloc” calls in C programs and/or “free” calls in C++
programs (e.g., by having “malloc” or “free” use available
cells in cell blocks before performing heap allocations).

The present embodiments may, of course, be carried out
in other ways than those specifically set forth herein without
departing from essential characteristics of the disclosure.
For example, it should be noted that the flowchart and block
diagrams in the Figures illustrate the architecture, function-
ality, and operation of possible implementations of systems,
methods and computer program products according to vari-
ous aspects of the present disclosure. In this regard, each
block in the flowchart or block diagrams may represent a
module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting
of the disclosure. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the
claims below are intended to include any disclosed structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present disclosure has been presented for
purposes of illustration and description, but is not intended
to be exhaustive or limited to the disclosure in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the disclosure. The aspects of the
disclosure herein were chosen and described in order to best
explain the principles of the disclosure and the practical
application, and to enable others of ordinary skill in the art
to understand the disclosure with various modifications as
are suited to the particular use contemplated.

Thus, the foregoing description and the accompanying
drawings represent non-limiting examples of the methods
and apparatus taught herein. As such, the present invention
is not limited by the foregoing description and accompany-
ing drawings. Instead, the present invention is limited only
by the following claims and their legal equivalents.

US 9,442,835 Bl

11

What is claimed is:

1. A computer-implemented method comprising:

obtaining, by a memory suballocation application from an
underlying memory allocation system, an allocation of

12

blocks whose cells are of the desired cell size to
determine if any cells in the one or more cell blocks are
available.

4. The computer-implemented method of claim 1, further

a plurality of cell blocks from a heap portion of 5 comprising:

memory, wherein each of the cell blocks includes a
plurality of equally-sized cells and a bitmap that indi-
cates which of its plurality of cells are available, and
wherein the plurality of cell blocks allocated to the
memory suballocation application are managed by the
memory suballocation application, and

the heap portion of memory is managed by the underlying

memory allocation system;

receiving, from a requesting application, a request for

dynamic allocation of a given amount of memory;

determining if the given amount of memory exceeds a

maximum cell size of the cells in a plurality of cell
blocks allocated to the memory suballocation applica-
tion;

if the given amount of memory exceeds the maximum cell

size, initiating a memory allocation via the underlying
memory allocation system from the heap portion of
memory for the given amount of memory that does not
use any of the plurality of cell blocks; and

if the given amount of memory does not exceed the

maximum cell size:
determining a desired cell size by:
interpreting the given amount of memory as a
desired cell size if the given amount of memory is
a valid cell size; or
rounding the given amount of memory up to a
nearest valid cell size to determine the desired cell
size if the given amount of memory is not a valid
cell size; and
if a bitmap of one of the plurality of cell blocks
indicates that a cell which has the desired cell size is
available:
dynamically allocating, via the memory suballoca-
tion application, the cell which has the desired cell
size to the requesting application; and
updating, by the memory suballocation application,
the bitmap of the cell block to which the cell
belongs to indicate that the cell is no longer
available; and
if the desired cell size does not exceed the maximum cell
size and no cell of the desired cell size is available,
obtaining, from the underlying memory allocation sys-
tem, an additional cell block from the heap having
equally-sized cells of the desired cell size for allocation
to the requesting application.
2. The computer-implemented method of claim 1,
wherein if the desired cell size does not exceed the maxi-
mum cell size and no cell of the desired cell size is available,
the method further comprises:
receiving the allocation of the additional cell block from
the underlying memory allocation system;

dynamically allocating, via the memory suballocation
application and from the additional cell block, a cell to
the requesting application; and

updating the bitmap of the additional cell block to which

the cell belongs to indicate that the cell is no longer
available.

3. The computer-implemented method of claim 1, further
comprising:

determining if a cell having the desired cell size is

available by parsing the bitmaps of one or more cell

10

15

30

35

40

45

50

55

60

65

receiving a request to deallocate a specified cell, wherein
the request includes a memory address of the specified
cell;
based on the memory address of the specified cell, iden-
tifying a cell block to which the specified cell belongs;
and
updating the bitmap of the identified cell block to indicate
that the specified cell is available.
5. The computer-implemented method of claim 4:
wherein each cell block has a size of 64 kilobytes;
wherein the four least significant hexadecimal digits of
each memory block base address is 0000; and
wherein identifying a cell block to which the specified cell
belongs comprises performing an AND operation
between the memory address of the specified cell and
the hexadecimal value FFFF0000 to determine a base
address of the identified cell block.
6. The computer-implemented method of claim 1,
wherein each valid cell size is a power of two.
7. The computer-implemented method of claim 1,
wherein within a given cell block:
the plurality of equally-sized cells are located in a begin-
ning portion of the cell block;
the bitmap of the cell block is located in a later portion of
the cell block having a higher memory address than the
beginning portion; and
an overrun gap separates the beginning portion of the cell
block and the later portion of the cell block.
8. A computing device comprising:
a memory circuit; and
a processing circuit configured to:
obtain, by a memory suballocation application from an
underlying memory allocation system, an allocation
of a plurality of cell blocks from a heap portion of
memory, wherein each of the cell blocks includes a
plurality of equally-sized cells and a bitmap that
indicates which of its plurality of cells are available,
and wherein the plurality of cell blocks allocated to
the memory suballocation application are managed
by the memory suballocation application, and the
heap portion of memory is managed by the under-
lying memory allocation system;
receive, from a requesting application, a request for
dynamic allocation of a given amount of memory;
determine if the given amount of memory exceeds a
maximum cell size of the cells in a plurality of cell
blocks allocated to the memory suballocation appli-
cation;
if the given amount of memory exceeds the maximum
cell size, initiate a memory allocation via the under-
lying memory allocation system from the heap por-
tion of memory for the given amount of memory that
does not use any of the plurality of cell blocks; and
if the given amount of memory does not exceed the
maximum cell size:
determine a desired cell size by:
interpreting the given amount of memory as a
desired cell size if the given amount of memory
is a valid cell size; or

US 9,442,835 Bl

13

rounding the given amount of memory up to a
nearest valid cell size to determine the desired
cell size if the given amount of memory is not
a valid cell size; and

if a bitmap of one of the plurality of cell blocks
indicates that a cell which has the desired cell size
is available:

dynamically allocate, via the memory suballoca-
tion application, the cell which has the desired
cell size to the requesting application; and

update, by the memory suballocation application,
the bitmap of the cell block to which the cell
belongs to indicate that the cell is no longer
available; and

if the desired cell size does not exceed the maximum
cell size and no cell of the desired cell size is
available, obtain, from the underlying memory allo-
cation system, an additional cell block from the heap
having equally-sized cells of the desired cell size for
allocation to the requesting application.

9. The computing device of claim 8, wherein if the desired
cell size does not exceed the maximum cell size and no cell
of the desired cell size is available, the processing circuit is
further configured to:

receive the allocation of the additional cell block from the

underlying memory allocation system;

dynamically allocate, via the memory suballocation appli-

cation and from the additional cell block, a cell to the
requesting application; and

update the bitmap of the additional cell block to which the

cell belongs to indicate that the cell is no longer
available.

10. The computing device of claim 8, wherein the pro-
cessing circuit is further configured to:

determine if a cell having the desired cell size is available

by parsing the bitmaps of one or more cell blocks
whose cells are of the desired cell size to determine if
any cells in the one or more cell blocks are available.

11. The computing device of claim 9, wherein the pro-
cessing circuit is further configured to:

receive a request to deallocate a specified cell, wherein the

request includes a memory address of the specified cell;
based on the memory address of the specified cell, iden-
tify a cell block to which the specified cell belongs; and
update the bitmap of the identified cell block to indicate
that the specified cell is available.
12. The computing device of claim 11:
wherein each cell block has a size of 64 kilobytes;
wherein the four least significant hexadecimal digits of
each memory block base address is 0000; and

wherein to identify a cell block to which the specified cell
belongs, the one or more processing circuits are con-
figured to perform an AND operation between the
memory address of the specified cell and the hexadeci-
mal value FFFFO000 to determine a base address of the
identified cell block.

13. The computing device of claim 8, wherein each valid
cell size is a power of two.

14. The computing device of claim 8, wherein within a
given cell block:

the plurality of equally-sized cells are located in a begin-

ning portion of the cell block;

the bitmap of the cell block is located in a later portion of

the cell block having a higher memory address than the
beginning portion; and

an overrun gap separates the beginning portion of the cell

block and the later portion of the cell block.

10

15

20

25

30

35

40

45

50

55

60

14

15. A computer program product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, wherein
the computer readable program code, when executed
by a processing circuit of a computing device, causes
the computing device to:
obtain, by a memory suballocation application from an

underlying memory allocation system, an allocation
of a plurality of cell blocks from a heap portion of
memory, wherein each of the cell blocks includes a
plurality of equally-sized cells and a bitmap that
indicates which of its plurality of cells are available,
and wherein the plurality of cell blocks allocated to
the memory suballocation application are managed
by the memory suballocation application, and the
heap portion of memory is managed by the under-
lying memory allocation system;
receive, from a requesting application, a request for
dynamic allocation of a given amount of memory;
determine if the given amount of memory exceeds a
maximum cell size of the cells in a plurality of cell
blocks allocated to the memory suballocation appli-
cation;
initiate a memory allocation via the underlying memory
allocation system from the heap portion of memory
for the given amount of memory that does not use
any of the plurality of cell blocks if the given amount
of memory exceeds the maximum cell size; and
if the given amount of memory does not exceed the
maximum cell size:
determine a desired cell size by:
interpreting the given amount of memory as a
desired cell size if the given amount of memory
is a valid cell size; or
rounding the given amount of memory up to a
nearest valid cell size to determine the desired
cell size if the given amount of memory is not
a valid cell size; and
if a bitmap of one of the plurality of cell blocks
indicates that a cell which has the desired cell size
is available:
dynamically allocate, via the memory suballoca-
tion application, the cell which has the desired
cell size to the requesting application; and
update, by the memory suballocation application,
the bitmap of the cell block to which the cell
belongs to indicate that the cell is no longer
available; and
if the desired cell size does not exceed the maximum
cell size and no cell of the desired cell size is
available, obtain, from the underlying memory
allocation system, an additional cell block from
the heap having equally-sized cells of the desired
cell size for allocation to the requesting applica-
tion.

16. The computer program product of claim 15, wherein
if the desired cell size does not exceed the maximum cell
size and no cell of the desired cell size is available, the
computer readable program code further causes the com-
puting device to:

receive the allocation of the additional cell block from the
underlying memory allocation system;

dynamically allocate, via the memory suballocation appli-
cation and from the additional cell block, a cell to the
requesting application; and

US 9,442,835 Bl

15
update the bitmap of the additional cell block to which the
cell belongs to indicate that the cell is no longer
available.

17. The computer program product of claim 15, wherein
the computer readable program code further causes the
computing device to:

determine if a cell having the desired cell size is available

by parsing the bitmaps of cell blocks whose cells are of
the desired cell size to determine if any cells in those
cell blocks are available.

18. The computer program product of claim 15, wherein
the computer readable program code further causes the
computing device to:

receive a request to deallocate a specified cell, wherein the

request includes a memory address of the specified cell;
based on the memory address of the specified cell, iden-
tify a cell block to which the specified cell belongs; and
update the bitmap of the identified cell block to indicate
that the specified cell is available.

19. The computer program product of claim 18:

wherein each cell block has a size of 64 kilobytes;

wherein the four least significant hexadecimal digits of
each memory block base address is 0000; and

wherein the computer readable program code configured
to identify a cell block to which the specified cell
belongs comprises computer readable program code
configured to perform an AND operation between the
memory address of the specified cell and the hexadeci-
mal value FFFFO000 to determine a base address of the
identified cell block.

20. The computer program product of claim 15, wherein
each valid cell size is a power of two.

#* #* #* #* #*

10

15

20

25

30

16

